第三百零五章 高斯的宝藏(中)(第4/4页)
手稿的开头记着几个数字,分别是:
220/284、2924/2620、17296/18416、9437056/9363584……
这几个数字没什么特别的,都是前人所计算出来的亲和数。
接着就是欧拉归纳出来的公式。
不过当徐云继续往下扫了几眼,他的呼吸便骤然停滞了几秒钟。
只见手稿的下半部,赫然写着几个数字:
5564/5020
6368/6232
10856/10744
14595/12285
18416/17296
……
1000452085744/1023608366096
1001583011750/1019368284250……
最后一组数字的末尾可以看到一个清晰的黑色小点,显然是钢笔笔尖留下的痕迹。
而在这组数字下方,还可以看到一道公式:
σ(z)=σ(x·y)=1+[σ(x)-1]+[σ(y)-1]+[σ(x)-1][σ(y)-1]=1+σ(x)+σ(y)-2+σ(x)σ(y)-σ(x)-σ(y)+1=σ(x)σ(y)
D(x)=x(1+12+13+……+1x2)≈x[ln(x/2+1)+r]≈x(lnx-0.116)。
另外在公式的右侧,还存在着几个龙飞凤舞的字母。
翻译成汉字便是:
【太简单不算了,无聊死个人】。
“……”
徐云无语良久,随后抬起头看向了高斯。
高斯眨了眨眼:
“你瞅啥?”
徐云朝他轻轻扬了扬手中的手稿,对高斯说道:
“高斯教授,您这份手稿末尾的那句话……”
“哦,你说那个啊。”
高斯回忆了几秒钟,很快想起了徐云说的内容,便解释道:
“字面意思,当初我在收到约瑟夫寄来的欧拉手稿后花了两天……应该是两天时间吧,要不就三天——反正很快就算出了上百组的亲和数。”
“后来我原本想归纳出一道对应的公式,不过算了一半感觉太简单了,就把它放到了一边。”
“哦对了,波恩哈德在三年前也算出来了这个公式,他的评价是有手就行。”
徐云:
“……”
高斯口中的约瑟夫就是约瑟夫·路易斯·拉格朗日,也是欧拉的爱徒,同样是一位青史留名的数学家。
他与欧拉的关系,差不多就相当于黎曼和高斯一般。
欧拉——拉格朗日——柯西,以及高斯——狄利克雷——黎曼,这算是近代数学很有名的两个传承派系。
另外在历史上。
拉格朗日也是欧拉手稿的继承者之一,他会寄信给高斯倒也正常。
只是……
高斯的这番话,未免也太tmd打击人了吧?
要知道。
哪怕是徐云穿越来的2022年,数学界也依旧没有一个统一的亲和数公式。
无论是欧拉还是叶维勒,他们的公式都有一定的失误率——例如欧拉便漏算了1184/1210这组数,直到1867年才由意大利的一个神童计算出来。
这个神童的名字叫做帕格尼尼,每次想到这个名字,徐云都会歪楼到猪柳蛋帕尼尼……
后世筛选亲和数靠的主要是约数和比较,也就是符合条件的输出YES,反之便是NO。
说难听点。
后世筛选的实质,其实就是穷举法。
结果在1850年这个时代,高斯和黎曼居然都推导出了亲和数的标准公式?
不过考虑到这二位在历史上的成就,加之欧拉已经推导出了部分亲和数公式……
好吧,他们能做到这一步似乎也没啥好意外的。
与此同时。
这也算是解开了一桩数学史上的谜题:
在计算机发明之前,几乎每个数学流派都会在亲和数方面投入大量的精力和时间。
但唯独高斯的哥廷根数学派系除外。
无论是高斯本人,还是黎曼、雅可比、戴德金或者狄利克雷,他们全都没有留下过任何研究亲和数的作品或者记录。
这其实是一种很奇怪的现象,好比后世搞量子理论的大佬不去研究微扰论一样违和。
如今随着高斯的这番话,一切总算是真相大白了:
合着他们早就破解了亲和数的谜团,觉得太简单才没去管……
随后高斯看了眼有些意犹未尽的徐云。
沉吟片刻,主动来到皮箱边翻找了几下。
很快。
他便从中取出了另一册稍厚一些的手稿,递给了徐云,说道:
“罗峰,既然你对亲和数有兴趣,这卷手稿或许会符合你的口味。”