第三百零五章 高斯的宝藏(中)(第3/4页)

而且更尴尬的是在之后几百年里,数学界依然没有找到第二对亲和数。

所以大家开始怀疑220和284是毕教主碰巧随口说出来的两个数字。

随着对于亲和数研究热度的减退,它就此渐渐淡出人们的视野。

直到公元850年,阿拉伯全能王数学家塔别脱·本·科拉提出了一个想法:

无穷的自然数中亲和数一定不止一对!

他和以往数学家不同,他不打算去从漫无边际的自然数中筛选。

而是从一般规律出发,试图找到亲和数的通用公式。

这位全能王为了研究亲和数放弃了其他所有科目的研究,年仅20多岁就谢顶了。

不过功夫不负有心人,后来他总算归纳出了一个规律:

a=3X2^(x-1)-1

b=3X2^x-1

c=9X2^(2x-1)-1。

这里的x是大于1的自然数,若abc均为素数,那么2xab与2xc就是一堆友好数。

比如取x=2,那么a5,b=11,c=71。

所以2×2×5×11=220和2×2×71=284为一对亲和数。

结论一出,证明了毕教主不是信口开河,亲和数的确存在,并且可以通过计算得到。

从这里起,故事开始有意思了起来……

自那以后。

数学家们不再没有头绪的寻找亲和数。

而是一边寻找更为简单的公式,一边通过公式大量计算来寻找亲和数。

但遗憾的是。

在之后800多年里,数学家们不仅没有优化全能王的公式,而且一对新的亲和数都没有找到……

这也就是说。

在毕达哥拉斯之后2500年,没有人能够找到第二对亲和数的影子!

这个局面一直持续到了1636年,逼王费马闪亮登上历史舞台,一举打破了2500多年的历史尴尬。

这位“业余数学家”实在看不下去了,白天养家糊口,晚上计算亲和数,算的脑瓜子嗡嗡的。

最终在他算的满头白发的时候,终于找到了第二对亲和数:

17296和18416。

接着继费马之后,笛卡尔也计算出了第三对亲和数:

9437056和9363584。

然后就是大挂逼、人形自走手稿打印机欧拉的登场:

他在1747年……也就是自己39岁的时候,一口气找到了30对亲和数!

接着大家还没有反应过来,甚至来不及鼓掌,他又宣布再次找到了30对……

但到了这一步,亲和数就僵住了:

直到1923年,数学家麦达其和叶维勒才会出其不意、明修栈道暗度陈仓。

他们一口气将亲和数扩展到了1095对,其中最大的甚至达到了25位数。

在1747年到1923年之间,数学家们只用欧拉的公式计算出了217对亲和数。

当然了。

随着计算机被发明出来后,亲和数的计算就简单许多了。

就像圆周率已经计算到了62.8万亿位一样,后世亲和数已经锁定到38万位数以上了。

你看,数字都有女朋友了,某些人却还是单身狗。

哦,徐云也是啊,那没事了。

总而言之。

在后世已经计算出大量亲和数的前提下。

徐云期待的并不是高斯的这卷手稿能给未来带去多大帮助,而是……

高斯作为赫赫有名的数学王子,他对于亲和数到底有没有做过计算呢?

至少在徐云的认知里。

后世高斯的‘遗物’中肯定是没有这卷手稿的——至少已经公开的那些笔迹里找不到相关手稿的身影。

想到这里。

徐云不由看了眼高斯,说道:

“高斯教授,必须要选择好手稿后才能查看内容吗?”

高斯点了点头:

“当然,后续内容需要付费观看。”

高斯的回答在徐云的预料之中,所以他也没想着讨价还价啥的,当即答道:

“那么高斯教授,我选的第一份手稿就是它了。”

高斯见说摆了摆手,意思就是随你的便。

得到高斯的允诺后。

徐云郑重的将这卷手稿拿到了书桌边,小心的解封了起来。

绑缚手稿的道具是一根红丝线,徐云拿住丝线一头,像是解鞋带似的一拉。

咻——

手稿瞬间展开。

这份手稿意外的有些薄,大概就一两张的模样。

徐云依旧是戴着手套将其拿起,认真的看了起来。