第六百八十九章 末广晃裕的小算盘(第3/6页)
“嵯峨根先生,根据大一统模型的计算与拟合结果,质子的寿命大概是10的三十次方年左右。”
“所以我设想的实验设备是这样的——采用50吨荧光液体作为基底,在液体的周围环绕了90000个光电倍增管,选择一处山体深度在千米以上的废弃矿坑,制作一个超级大型的探测器。”
“至于这套探测器的原理,则是基于氢原子的量子能级结构……”
众所周知。
根据量子力学,每个状态下氢原子的量子能级结构可以被描述为依赖于量子数n、l和j的能量E:
E(n,l,j)=EBohrf(mp,me)+ENS(rp,n,l)+EQED(n,l,j)。
其中EBohr表示玻尔结构,ENS描述了原子尺寸效应,EQED代表了量子电动力学修正。
在这种情况下。
而氢原子的整个能级结构可以由两个未知数得出:
一是代表所有原子物理和化学的能量尺度R∞,另一个就是质子半径rp。
反之亦然,如果知道了氢原子的整个能级结构,那么自然也可以反推出后面两者。
而在徐云协助赵忠尧等人发布的元强子模型中,他们用兰姆位移法外推出了氢原子的整个能级结构。
基于这个参数,汤川秀树便想出了这样一套的测量设备:
氢原子的整个能级结构逆推出质子半径rp,接着在高达15位精度2S能级下测量零动量散射矢量——2S能级不受海森堡测不准原理的影响,因此它的准确性很高。
测出零动量散射矢量之后,开始对中子的超冷寿命进行测量。
没错。
中子,而非直接测量质子。
汤川秀树计划让中子与固态且寒冷的氘相互作用,使中子失去能量,从而将中子减速到超低温度状态。
接着这些中子被放入浴缸大小的真空瓶中,里面有约4000块磁铁。
强磁场对中子起到了约束作用,可以阻止它们与瓶子表面接触,因此这些超冷中子可以得以长时间保存。
然后再进行约束法试验,收集出现的质子数,这样R∞就可以计算出来了。
有了R∞和质子半径rp,那么切伦科夫辐射的参数便也有了。
得到这个参数以后,就可以开始修建研发观察质子样本的探测器。
最终只要能找的一个磁距有效质量异常的质子,那么必然就可以确定它出现了衰变。
所以整个过程分成三个部分,一是切伦科夫辐射参数的收集,二是整个探测器主体的建造,三则是探测器建造成功后的数据采集。
“15位精度的2S能级……”
看着汤川秀树写出来设备原理的相关参数,嵯峨根辽吉的脸上露出了一丝迟疑:
“汤川教授,这种精度的设备需要的成本应该会很高吧?”
汤川秀树点了点头,坦然承认道:
“没错,最少需要八个亿的美刀,以及300位左右的研究员,以及2000位以上的研究生。”
唰——
听到这个数字。
现场顿时落针可闻。
八亿美刀?
要知道。
这年头霓虹全国的GDP也不过400个亿美刀,而这些钱是需要分配到无数行业去运作的。
比如说民生的基建、医疗、养老,还有商业的支出,以及霓虹的军费。
从1950年开始到现在,霓虹在科技方面投入的总费用也不过3个亿美刀罢了……
汤川秀树这一开口,就是整整八个亿,相当于霓虹过去十年科技投入总和的两倍接近三倍……
另外后续的研究人员也非常吓人。
这年头的研究员和后世一样,与教授属于同一级别的正高级职称。
虽然后世没有具体职称人数可以查询,但有些数据还是可以找到的:
如今霓虹一共有215所高校,高等教育毛入学率已超过15%,大学在校生数62.6万人。
按照后世的经验。
一所高校中的物理学院一般有15-20个正高教授,方向又分成经典物理、凝聚态物理、粒子物理等等。
其中理论物理的人数少的大概只有两三人,多的大概有五六人,就按照中位数四来计算吧。
也就是霓虹如今高校体系内的教授人数,大概是900人上下。
至于霓虹如今的理论物理研究所数量只有38家,其中大部分都还是隶属于高校体系,例如京都大学的理论物理研究所,就是由汤川秀树这个京都大学教授兼容所长。