第四百五十二章 截然不同的结果(上)(第4/4页)

它们使得l^z的本征值总是依次递增或递减整数1,当角动量的模量平方取定且l^z的最大本征值为m=l-1时,则必有l^+ψl=0。

看到这里。

可能有部分众所周同学就感觉有些奇怪了:

为什么最大本征值是m=l-1呢,不应该是等于l吗?

原因很简单。

因为当角动量的模量平方取定且l为m的量最大允许值时,本征值为l+1的态是不存在的。

由于系统总可以处于轨道角动量为0的状态,所以0必是分量算符l^z的一个本征值。

而由l^+与l^-的行为可知,对于角动量分量算符l^z,它的相邻本征值之间总是相差一个整数1。

所以分量算符l^z的本征值只能为m=0,±1,±2,……±l-1。

当然了。

徐云能够想到这点,很大部分要归功于此时他拥有的视野。

就像威腾他们之前忽略了孤位基矢的畸变一样,l+1的态并不在常规的校验范围里,比它重要的流程还有不少。

而一旦在这里计算失误……

那么这次的推导……至少周绍平和徐云代表的科院组的推导,将会彻底功亏一篑。

解决了这个问题,剩下的就是二元旋量了。

在这个过程中。

需要把s^z的本征值σ看作是一个变量,则粒子的自旋波函数是σ的函数——此前提及过,冥王星粒子的自旋是半奇数,也就是1/2、3/2或者5/2等等……

因此它的矩阵因素只有一种表现形:

ξ′1η′2-ξ′2η′1=(αδ-βγ)(ξ1η2-ξ2η1)。

这是两个二元旋量的组合,是一个在二元旋量空间中的标量。

写到这里。

徐云再次翻动了一下之前的数据。

“果然没错……行列式等于1,这就是导致flux取值太大的真正原因。”

其实在之前的过程中,徐云一直感觉有一个疑惑没有被解答:

那就是在孤点粒子测算中,预期的background是3.2fb^-1——这是他亲手检测出来的数据,并且检测了不止一次。

但对应的flux取值却依旧变大了,虽然现象上看是因为‘冥王星’微粒的影响,可空间算符上却一直没有一个合适的解释。

如今看来……

原因就是因为变换后的行列式等于1。

也就是它的外部限制条件改变了。

因为对于非相对论情形,ξ1ξ*1+ξ2ξ*2的物理意义是在空间中确定的某一点处找到粒子的概率。

因此ξ1ξ*1+ξ2ξ*2必须是一个标量,即应有:

ξ′1ξ′*1+ξ′2ξ′*2=(Uκ1ξκ)(Uκ*1ξ*κ)+(Uκ2ξκ)(Uκ*2ξ*κ)=ξ1ξ*1+ξ2ξ*2。

但对于相对论情形,ξ1ξ*1+ξ2ξ*2的物理意义不再是在空间中确定的某一点处找到粒子的概率,而是一个四维矢量的时间分量。

也就是它只有3个独立的实参量,并且其中一个是固……等等!

蓦然。

徐云在纸上行进的笔尖突兀一顿,脑海中冒出了一个有些惊悚的念头。

“卧槽,不会是那玩意儿吧?……”

……