第三百零二章 遇事不决……(第3/4页)

而磁鼓之后。

登场的便是水银延迟线存储器了。

水银延迟线存储器的原理和小麦说的差不多,核心就是一个:

声波和电信号的传播时间差。

当然了。

这里说的是电信号,而非电子。

电子在金属导线中的运动速度是非常非常慢的,有些情况甚至可能一秒钟才移动给几厘米。

电信号的速度其实就是场的速度,具体要看材料的介电常数

一般来说,铜线的电信号差不多就是一秒二十三万公里左右。

声波和电信号的传递时间差巨大,这就让水银延迟存储技术的出现有了理论基础:

它的一端是电声转换装置,把电信号转换为声波在水银中传播。

由于传播速度比较慢,所以声波信号传播到另一端差不多要一到数秒的时间。

另一端则是声-电转换装置,将收到的声波信号再次装换为电信号,再再将处理过的信号再次输入到电-声转换一端。

这样形成闭环,就可以把信号存储在水银管中了。

在原本历史中。

人类第一台通用自动计算机UNIVAC-1使用的便是这个技术,时间差大约是960ms左右。

这个思路无疑要远远领先于这个时代,不过要比徐云想想的极端情况还是要好一些的——小麦毕竟只是个挂壁,还没拿到gm的版本开发权。

至于水银延迟存储技术再往后嘛……

便是威廉管、磁芯以及如今的磁盘了。

至于再未来的趋势,则是徐云此前得到过的DNA存储技术。

视线再回归现实。

小麦的这个想法很快引起了众人注意,包括阿达和黎曼在内,诸多大老们再次聚集到了桌边。

巴贝奇是现场手工能力最强的一人,因此在激动的同时,也很快想到了实操环节的问题:

“麦克斯韦同学,你的想法虽然很好,不过我们要如何保证时间差尽可能延长呢?”

“如果只是一根几厘米十几厘米的试管,那么声波和电信号可以说几乎不存在时间差——至少不存在足够存储数据的时间差。”

阿达亦是点了点头。

十几厘米的试管,声波基本上嗖一下的就会秒到,固然和电信号之间依旧存在时间差,但显然无法被利用。

不过小麦显然对此早有腹稿,只见他很是自信的朝巴贝奇一笑:

“巴贝奇先生,这个问题我其实也曾经想过。”

“首先呢,我们可以扩大萧炎管的长度,它的材质只是透明玻璃,大量生产的情况下,十厘米和一米的成本差别其实不算很大。”

“另外便是,我们可以加上一些其他的小设备,比如……”

“罗峰先生在检验电磁波时,发明的那个检波器。”

巴贝奇眨了眨眼,不明所以的问道:

“检波器?”

小麦点点头,从抽屉里取出了一个十厘米左右的小东西——此物赫然便是徐云此前发明的铁屑检波器。

聪明的同学应该都记得。

当初在验证光电效应的时候,徐云曾经用上了两个关键的检测手段:

他先是用驻波法在屋内形成了驻波,接着用制作好的铁屑检波器检验波峰波谷,最终计算出了电磁波的波长。

检波器的原理很简单:

在光电效应没有发生的时候,铁屑是松散分布的。

整个检波器就相当于断路,电表就不会显示电流。

而一旦检测到电磁波。

铁屑就会活动起来,聚集成一团,起到导体的作用,激活电压表。

越靠近波峰或者波谷,铁屑凝聚的就越多,电表上的数值也会越大。

其他位置的铁屑凝聚的少,电表示数就会越低甚至为0。

在给巴贝奇介绍完徐云设计的检波器原理后,小麦又说道:

“巴贝奇先生,我是这样想的,我们可以在信号的接入口位置,加装一个或者数个以检波器为原理制成的小元件。”

“接着控制信号强弱,周期性的限制外部导线中的电信号传输,有些类似……波浪。”

“如此一来,应该在一定程度上可以延长时间差,甚至对后续的计算也有帮助。”

巴贝奇闻言,顿时陷入了沉思。

小麦所说的原理有些类似后世的脉冲电流,不过脉冲这个概念要在1936年才会正式出现——就像威廉·惠威尔提出了科学家这个称谓一样,许多现代看起来稀疏平常的词或者字,实际上并不是先天便存在的。