第二十四章 这个时空,唯一的名字!(第2/2页)
原本的时空他管不着也没能力去管,但在这个时间点里,徐云不会让杨辉三角与帕斯卡共享其名!
有牛老爷子做担保,杨辉三角就是杨辉三角。
一个只属于华夏的名词!
随后徐云心中呼出一口浊气,继续动笔在上面画了几条线:
“牛顿先生,您看,这个三角的两条斜边都是由数字1组成的,而其余的数都等于它肩上的两个数相加。
从图形上说明的任一数C(n,r),都等于它肩上的两数C(n-1,r-1)及C(n-1,r)之和。”
说着徐云在纸上写下了一个公式:
C(n,r)=C(n-1,r-1)+C(n-1,r)(n=1,2,3,···n)
以及……
(a+b)^2=a^2+2ab+b^2
(a+b)^3=a^3+3a^2b+3ab^2+b^3
(a+b)^4=a^4+4a^3b+6a^2b^2+6ab^3+b^4
(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5
在徐云写到三次方那栏时,小牛的表情逐渐开始变得严肃。
而但徐云写到了六次方时,小牛已然坐立不住。
干脆站起身,抢过徐云的笔,自己写了起来:
(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+a^6!
很明显。
杨辉三角第n行的数字有n项,数字和为2的n-1次幂,(a+b)的n次方的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项!
虽然这个展开式对于小牛来说毫无难度,甚至可以算是二项式展开的基础操作。
但是,这还是头一次有人如此直观的将开方数用图形给表达出来!
更关键的是,杨辉三角第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
这对于小牛正在进行的二项式后续推导,无疑是个巨大的助力!
但是……
小牛的眉头又逐渐皱了起来:
杨辉三角的出现可以说给他打开了一个新思路,但对于他现在所卡顿的问题,也就是(P+PQ)m/n的展开却并没有多大帮助。
因为杨辉三角涉及到的是系数问题,而小牛头疼的却是指数问题。
现在的小牛就像是一位骑行的老司机。
拐过一个山道时忽然发现前方百米过后一马平川,景色壮美,但面前十多米处却有一个巨大的落石堆挡路。
而就在小牛纠结之时,徐云又缓缓说了一句话:
“对了,牛顿先生,韩立爵士对于杨辉三角也有所研究。
后来他发现二项式的指数似乎并不一定需要是整数,分数甚至负数似乎也是可行的。”
“负数的论证方法他没有说明,但却留下了分数的论证方法。”
“他将其称为……”
“韩立展开!”
……